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Abstract. Next Generation Sequencing (NGS) has revolutionised molec-
ular biology, allowing routine clinical sequencing. NGS data consists of
short sequence reads, given context through downstream assembly and
annotation, a process requiring reads consistent with the assumed species
or species group. The common bacterium Staphylococcus aureus may cause
severe and life-threatening infections in humans, with some strains exhibit-
ing antibiotic resistance. Here we apply an SVM classifier to the impor-
tant problem of distinguishing S. aureus sequencing projects from other
pathogens, including closely related Staphylococci. Using a sequence k-mer
representation, we achieve precision and recall above 95%, implicating fea-
tures with important functional associations.

1 Introduction

Neat Generation Sequencing (NGS) [1] has revolutionised molecular biology, in-
creasing efficiency to the point that clinical sequencing is now routine. This
paper considers sequencing related to bacterial infection, although the ideas are
more broadly applicable. Normally, a lab may isolate DNA from a bacterial
colony, and sequence the genome before the species is known with certainty.
Clinical signs and non-molecular diagnostics may offer some insight, but the
suspicion needs to be confirmed if species-specific downstream informatics are
to work successfully. Broadly, the task is to take the raw output of the se-
quencer — the project FASTQ file — and determine whether the whole project
best resembles a sequencing project for a single species. In the alternative, the
project might be corrupted, drawn from a mix of species, or reflect a previously
unknown species or strain. Confounding factors include variable quality and
length of data from different instruments and the inherent genetic variability of
bacterial species, which include inversion of novel DNA in the form of plasmids —
molecular DNA independent of the main chromosome — and prophages — genetic
material which remains a part of bacterial DNA as a result of viral infection.

It is important to distinguish this problem from the related task of species
identification — as practised in metagenomics [2]. Metagenomic studies rely on a
common, highly conserved target, the 165 region; in contrast, clinical sequencing
is characterised only through the read distribution, and these are not selected
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a priori, and indeed vary significantly across technologies. Our task is to find a
representation which allows ready comparison across projects. In the following
sections, we develop a simple approach based on a spectrum of short k-mers —
sequence substrings of length k — which proves appropriate for the task.

The Staphylococcus genus includes at least forty species, of which several
are harmless. However, some species, such as S. aureus, may cause serious,
life threatening infections. Antibiotic resistance in Staphylococcus species has
become widespread, purportedly as a result of horizontal gene transfer [6]. This
has created strains which are particularly difficult to treat, notably methicillin-
resistant S. aureus (MRSA) and vancomycin-resistant S. aureus (VRSA), both
of which have been implicated in serious outbreaks in major hospitals.

Both Staph and non-Staph projects are made available through the project
FASTQ file, the de facto standard for NGS sequence reads. FASTQ combines
a traditional FASTA sequence format with quality scores indicating confidence
in the base prediction, scores whose utility is limited by inconsistency across
vendors; we ignore them for this study. The file is then a collection of generated
reads, held separately without additional structure. Each individual read is
treated equally, and resulting k-mer counts are combined.

A general discussion of NGS technologies lies well beyond the scope of this
paper, but the field was reviewed recently by [1]. Here we note only the principal
characteristics of the machines. Of most interest is the variation in the read
length. Homogeneity among large sets of sequencing project data cannot be
assumed, and one of the challenges is to provide a unified representation. The
majority of genomes examined in this research were sequenced using the Illumina
and 454 technologies, with others based on PacBio and Ion Torrent machines.
Broadly, these may be grouped according to the longer reads from Ion Torrent,
Roche 454 and PacBio (200-400,330,964) and the far shorter reads of the Illumina
platform (75-90). While we do not address this issue in the current study, an
important consequence of this variation lies in the associated depth of coverage
— the number of reads overlapping a particular base. For our purposes, the
coverage provided with each of these technologies is adequate to ensure some
reliable calculation of the relative counts. Working, as we do, with short k-mers
avoids some pitfalls which might arise when working with the longest fragments
directly, and offers the promise of lower computational overhead.

The remainder of this paper is organised as follows: In Section 2.1, we briefly
introduce the classifier and the data representation, before considering the data
set and our initial exploration and feature selection in Section 2.2. Details of
the classifier performance are provided in Section 3 and we conclude in Section 4
with some discussion and future directions for this area of research.

2 Approach and Data Selection

2.1 Classifier and Representation

The Support Vector Machine is a linear classifier embodying the principles of Sta-
tistical Learning Theory [3] and supporting extensions to non-separable datasets
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through the use of slack variables and penalty terms, and extensions to higher
dimensions and subtle similarity relationships — including those defined over
structures — through the use of Mercer kernels [4]. As is well-known, the de-
cision surface is chosen so as to maximise the margin of separation between
examples of the positive class — here STAPH_AURFEUS — and examples of
the negative class — NOT_STAPH_AUREUS. The formulation employed is
the more traditional C-SVM. The SVM is here a binary classifier, predicting
the label y; € {—1,+1} for a given example pattern z;, based on training over
the labelled set {(z;,y;)[i = 1...1}. Ultimately, the classifier is determined by
solving the following dual problem:

maXQ Za, Zzazajyzy] (@i, ), (1)

7,1]1

subject to the constraints:
l
Z ;Y = Oa (2)
i=1

and
0<o; <C,i=1...1. (3)

Here the a;s are the Lagrange multipliers associated with the constraints, K (-,-)
is the kernel similarity function, and C is the coefficient of the primal constraint
penalty term. The final form of the function is then:

Z:oz,yz (z;,x) + b, (4)

€S

where S is the index set of support vectors, and b is the bias term.

Our use of a k-mer spectrum follows the approach of Leslie et. al. [5], though
it was not necessary to consider non-zero values of the mismatch parameter.
Counts are accumulated via a sliding window over each sequence read, the results
being summed and subsequently normalised. Thus, the representation presented
to the model initially is that of a vector of counts associated with each project,
with the dimension determined in principle as 4¢, where k is the chosen k-mer
length. In the following sections, we consider the effective dimension of these
datasets after applying feature selection.

2.2 Data Set and EDA

Initial explorations were based on 20 projects from the Read Lab, balanced
evenly between S.aureus and other genomes. Other data included 5 E. coli,
and one each of Pseudomonas aueriginosa, Clostridium botulinum, Bordetella
bronchideptica, Myobacterium colombiense and Neisseiria meningitidis, a set
chosen for diversity. The 6-mer count Gram matrix showed abundant evidence
differentiating in-class from out-class projects. SVM trials delivered perfect clas-
sification, with little disruption from an additional ten out-class examples.
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For more serious runs, a set was assembled of the raw FASTQ project files
for a total of 60 S. aureus genomes and a total of 70 additional genomes of other
kinds. Critically, this additional set included some 15 Staphylococcus genomes
other than S. aureus. These data were received in raw SRA form from NCBI, and
converted to FASTA files using NCBI utilities. Tokenization of the sequences
was performed for k = 6,8 and 10, thereby yielding comprehensive feature sets
at each level. Feature selection approaches were investigated for £ = 8 and 10,
and after a number of trials, feature sets were determined using Relief [7] as
supported by Weka. Relief determines an attribute relevance score based on the
difference from the feature values of its nearest neighbours, and is known to be
fast even in the presence of a large number of features.

Reduced datasets were determined for £k = 8 and 10, with the full set em-
ployed for = 6 due to the relatively limited scale of the vector. Based on the
distribution of the rankings returned from Relief, the feature set dimension for
k = 8 was reduced to around 5000, with 10,000 selected for £ = 10. While the
selection at the k = 8 level was straightforward from inspection of the scores, a
good deal of experimentation was undertaken for the 10-mer case, with classifica-
tion runs for widely varying feature sets, noting both accuracy and the quality of
the model, as reflected in the number of support vectors relative to the training
set size. The selection of 10,000 features provided an optimal trade-off between
classification cost and accuracy. Smaller feature sets resulted in significant in-
creases in both false positive and false negative classifications, while larger fea-
ture sets presented unacceptable computational cost for commodity hardware.
A full set of the organisms and top scoring k-mers used in the study is provided
in the supplementary material at http://eprints.qut.edu.au/57694/.

3 Results

SVMs employed in this study were trained rapidly on commodity hardware using
the R environment’s e1071 package. A range of kernels and parameter settings
were explored, but were found to offer no additional benefit over the base spectral
representation and a linear, dot-product combination of the feature vectors. As
noted in the previous section, the dimension of the pattern space was reduced
through the use of Relief, allowing far more rapid training and testing of the
models. These feature sets were employed throughout the training and testing
of the models. The full set of 4096 features were employed for k£ = 6, with no
zero counts encountered. Reduced sets were employed for k£ = 8 : 65536 — 4975
and k£ = 10 : 1048576 — 10000.

The full data set of 130 sequencing projects was employed in the study, parti-
tioned into training and holdout sets, with the split varying as described below.
Training results shown are the mean and standard deviation from classification
of the test fold when 10-fold cross validation is employed on this training set.
Direct training results over the 9 folds are not reported. The columns at right
show the results of applying the best model obtained during the training process
to the hold out set for the current split. Initial exploration was performed with a
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model development set of 30 count vectors, with a hold-out set of the remaining
100. A wide variety of values were considered for C, with 278 proving optimal
and being used for subsequent runs. The tables below show increasing training
set sizes in successive increments of 20!, for £ = 6,8 and 10.

Training | Hold-out Mean Std Hold-out
Set Size | Set Size | Accuracy | Deviation | Accuracy | Precision | Recall
30 100 0.90 0.10 0.79 0.72 0.96
50 80 0.92 0.10 0.80 0.70 0.97
70 60 0.87 0.16 0.75 0.63 1.0
90 40 0.89 0.11 0.78 0.63 1.0
Table 1: Result summary for k = 6.
Training | Hold-out Mean Std Hold-out
Set Size | Set Size | Accuracy | Deviation | Accuracy | Precision | Recall
30 100 0.93 0.06 0.79 0.71 0.98
50 80 0.98 0.06 0.79 0.69 0.94
70 60 0.94 0.07 0.82 0.71 0.96
90 40 0.91 0.12 0.78 0.63 1.0
Table 2: Result summary for k£ = 8.
Training | Hold-out Mean Std Hold-out
Set Size | Set Size | Accuracy | Deviation | Accuracy | Precision | Recall
40 100 0.96 0.06 0.86 0.76 0.96
50 80 1.0 0.00 0.81 0.71 0.97
70 60 0.96 0.07 0.97 0.96 0.96
90 40 0.97 0.08 0.95 0.94 0.94

Table 3: Result summary for k = 10.

4 Conclusions

In this work we have demonstrated successful SVM classification of clinical se-
quencing projects based on a k-mer spectrum representation. The results offer
strong evidence that larger values of k, coupled with a training set above some
critical size to ensure broad coverage of the competing genomes, are necessary to
ensure good performance for this problem. Certainly the results of Table 3 bear
this out, with superior performance to those for £ = 6 and 8, and a compelling

INote that a training set size of 40 was the smallest used for the 10-mer study, the results
at size 30 being poor.
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transition in performance for a training set size of 70 and above. These observa-
tions are confirmed when one examines the count of support vectors relative to
set size, a ratio here of around 0.2 compared to almost 0.5 for the weaker runs
for k = 6, 8. In particular we note the success in achieving not merely high recall
(0.96) but equally high precision, a critical factor in this problem and one mak-
ing the earlier runs unusable in practice. Additional work is being undertaken
to examine higher values of k, but work from other studies suggests a trade-off
between k-mer length and precision in problems of this nature. This was true of
our earlier work in promoter prediction [8], and in work on similarity based on
D2 and other word based distances [9]. Higher values of k, needless to say, may
also come with a substantial computational cost.

Examination of the top-scoring k-mers is revealing from a biological stand-
point, revealing a sharply higher GC nucleotide content (55%) than the aver-
age for the genome (34%), possibly representing selection against the prevailing
GC — AT mutation bias in bacterial genomes. There were more than 1645
matches of the 10-mer features to the S. aureus N315 genome, 918 mapping to
annotated features (mostly genes). More than 300 10-mer matches were at one
locus — the sdrCDE operon, which encodes a fibrinogen binding complex — fib-
rinogen being a protein which assists blood clotting — and is thus an interesting
diagnostic target. Additional studies of this nature may elucidate a set of such
characteristic sequence fragments, of a size useful for more general analysis. Our
success in distinguishing even between S. aureus and other Staphylococci suggests
that fine grained distinctions are possible, and augur well for our ongoing studies
over a much larger set of genomes.
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