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ABSTRACT Expression quantitative trait locus (eQTL) detection has emerged as an important tool for
unraveling of the relationship between genetic risk factors and disease or clinical phenotypes. Most studies
use single marker linear regression to discover primary signals, followed by sequential conditional modeling
to detect secondary genetic variants affecting gene expression. However, this approach assumes that
functional variants are sparsely distributed and that close linkage between them has little impact on
estimation of their precise location and the magnitude of effects. We describe a series of simulation studies
designed to evaluate the impact of linkage disequilibrium (LD) on the fine mapping of causal variants with
typical eQTL effect sizes. In the presence of multisite regulation, even though between 80 and 90% of
modeled eSNPs associate with normally distributed traits, up to 10% of all secondary signals could be
statistical artifacts, and at least 5% but up to one-quarter of credible intervals of SNPs within r2 . 0.8 of the
peak may not even include a causal site. The Bayesian methods eCAVIAR and DAP (Deterministic Approx-
imation of Posteriors) provide only modest improvement in resolution. Given the strong empirical evidence
that gene expression is commonly regulated by more than one variant, we conclude that the fine mapping
of causal variants needs to be adjusted for multisite influences, as conditional estimates can be highly
biased by interference among linked sites, but ultimately experimental verification of individual effects is
needed. Presumably similar conclusions apply not just to eQTL mapping, but to multisite influences on fine
mapping of most types of quantitative trait.
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Since it is now recognized that many SNP–trait associations identified
by genome-wide association studies (GWAS) can be attributed to ef-
fects on gene expression, precise estimation of the location and effect

sizes of regulatory polymorphisms has become important for under-
standing the relationship between genetic and phenotypic variation
(Maurano et al. 2012; Farh et al. 2015). eQTL analysis and related
functional genomic strategies are, thus, now a standard component
of genetic fine mapping (Nicolae et al. 2010). The minimal expectation
is that they can identify the gene within a locus that accounts for a
GWAS signal, although even this is a far from trivial undertaking
(Chung et al. 2014; Pickrell 2014). Many investigators make the stron-
ger assumption that colocalization of eSNP and GWAS signals to a
tight LD interval implies the ability to define if not the causal variant,
then at least a credible set of SNPs that include the causal site (Trynka
et al. 2013; Gaulton et al. 2015; Kichaev and Pasaniuc 2015; Liu et al.
2016). Studies across a wide range of organisms including yeast, mice,
and several plant species, reviewed by Albert and Kruglyak (2015) and
Cubillos et al. (2012), show that individual regulatory substitutions can
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be experimentally defined and linked to visible phenotypes. Similarly,
the SORT1 example in humans (Musunuru et al. 2010) showed how
dissection of the path from regulatory variant to tissue-specific expres-
sion can define causal influences on (heart) disease. However, this is
painstaking work that relies on strong prior statistical or functional
prediction of likely credible intervals. The enrichment of chromatin
marks such as DNAse hypersensitive sites in the vicinity of eQTL
validates the assumption that many credible intervals encompass reg-
ulatory SNPs (ENCODE Project Consortium 2012; Roadmap Epige-
nomics Consortium 2015), but conversely raises the question of why
there are somany instances of discordant fine localization (Huang et al.
2015; Chun et al. 2017); does this reflect biochemistry (regulatory sites
do not always map to ENCODE elements), or simply limits to the
statistical resolution of association signals (Udler et al. 2010)?

The general andparsimoniousassumption is that functional variants
are sparsely distributed, and hence that their precise localization or
estimation of effect sizes is not affected by interference due to con-
foundingof statistical signals.However, asGWAShave increased in size,
it has become clear that multisite effects are not uncommon. For
example, the latest meta-analysis of height suggests that over one-third
of the .400 identified loci have multiple independent signals (Wood
et al. 2014), and that the expression of a large proportion of genes in
lymphocyte cell lines is regulated by two or more locally acting variants
(cis-eQTL) (Liang et al. 2013). Since LDwithin a locus can be extensive,
the potential for misestimation of eQTL effects due to interference
between signals from tightly linked polymorphisms is high. Here, we
address this concern through a combination of simulation studies.

Heritability analyses in recent years have shown that, on average, up
to half of the variance of phenotypic traits, or of transcript abundance,
can be explained by genetic factors, mostly acting in an additivemanner
(Powell et al. 2013; Wright et al. 2014). An important difference with
visible phenotypic traits is that one or a few SNPs are often found to
explain a large proportion of the genetic variance. These typically lie
within 1 Mb of the transcript and are regarded as cis-acting regulatory
polymorphisms. As shown by Lloyd-Jones et al. (2017), 35% of all ex-
pressed genes in peripheral blood have narrow sense heritability.0.1,
with a median of 0.3. The sentinel cis-eQTL, namely the SNP with the
strongest association signal at a locus, typically explains 85% of the
locally acting variance, which is two-thirds of that attributed to all de-
tected eQTL, but the majority of the genetic variance is generally actu-
ally due to trans-acting polymorphisms of small effect.

The largest blood eQTL study reported to date, assembled from
meta-analysis of over 5000 individual Illumina microarray samples
(Westra et al. 2013), reports single site local associations that are
genome-wide significant for 6418 genes (44% of those tested) with a 5%
false discovery rate. However, the blood eQTL browser only provides
single site (unconditional) estimates for all local SNPs at each locus. A
more powerful cross-population Bayesian method (Gusev et al. 2014),
applied to just 420 lymphocyte cell lines in the Geuvadis dataset
(Lappalainen et al. 2013), found a very similar number of genes with
evidence for regulation by a local eQTL (eGenes), 14% of which had
strong evidence for secondary association signals in a multisite analysis
(Wen et al. 2015).

While increased sample size is certain to reveal specific instances of
multisite regulation, it also provides the opportunity tomore accurately
define effect sizes in the presence of multiple sites that have varying
degrees of LD. Figure 1 illustrates the reasoning for a hypothetical case.
Five true eSNP effects are indicated by red lines with increasing effects
above the horizontal and decreasing below it, while single site uncon-
ditional estimates at common variants across the locus are indicated as
black lines. Where two sites in high LD have effects in the opposite

direction (green circle), they will either cancel each other out or sub-
stantially bias the effect size estimates. Where two sites act in the same
direction (blue circle), their effects will tend to be added together,
and hence the strongest association will overestimate the effect while
the secondary site will be underestimated or not detected. Weaker
associations (brown circle) may also go undetected if they are influ-
enced by even low levels of LD. In theory, if the location of the func-
tional sites is known a priori, these difficulties can be resolved by
multisite linear regression simultaneously fitting all of the identified
SNPs. In practice, the identities of the functional sites are unknown,
and exhaustive multisite modeling is impractical, so sequential condi-
tional analyses are used to find secondary, tertiary, and so forth asso-
ciations that are independent of the primary signal. In the presence of
strong LD, this approach is expected to miss independent associations,
which will remain confounded with the primary signal.

Several Bayesian methods have recently been introduced that should
improve localization of linked causal variants, although they do not in
general estimate effect sizes. CAVIAR (Hormozdiari et al. 2014) enumer-
ates all possible causal states for one or more sites in a short interval
of #100 SNPs, but to control the computational burden, the maximum
number of causal variants is typically set to two. It is claimed to improve
identification of causal variants by 20–50% over existing methods such as
BIMBAM (Servin and Stephens 2007). The eCAVIAR extension for
combined eQTL and GWAS analysis (Hormozdiari et al. 2016) uses a
greedymethod tofind a subset of SNPswith a specific confidence (95%by
default) that causal variants are identified as candidates. PAINTOR
(Kichaev et al. 2014) uses a similar algorithm, whereas FM-QTL (Wen
et al. 2015) applies an MCMC algorithm to explore the causal status
space, utilizing a posterior inclusion probability to choose the causal
variant credible interval DAP software was then developed (Wen et al.
2016) to explore high probability causal intervals with reasonable runtime.
FINEMAP (Benner et al. 2016) uses logical schema that is similar to that
of CAVIAR, but adopts a Shotgun Stochastic Search method to restrict
the search space and focus on combinations of high probability intervals.

This study explores the sources of error in estimating eQTL effects.
We start by using simulations to ask howmultisite regulation influences

Figure 1 Schematic of multisite regulation of gene expression. Black
bars indicate univariate estimates of allelic effects of minor alleles in-
creasing (above the horizontal) or decreasing (below the horizontal)
gene expression without conditioning on other sites. Red bars show
the actual effects at five single nucleotide polymorphisms in this locus,
which has a linkage disequilibrium profile with two large and one small
block of elevated linkage disequilibrium (pink squares). Dotted horizontal
lines indicate a statistical significance threshold, which is only exceeded in
the univariate modeling by the two left-hand sites (blue circle). Since these
two sites act in the same direction, they reinforce one another, leading to
overestimation of their effect sizes, whereas the two at the right (green
circle) interfere with one another antagonistically, leading to underesti-
mation of their effects. The effect at the fifth site (brown circle) may only be
identified following conditional analysis.
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(i) the number of independent peaks detected by stepwise conditional
analysis, (ii) the accuracy of localization of true causal variants, and (iii)
the effect size estimation of discovered causal variants. We also address
the question of what proportion of discovered peaks may be driven
by undocumented variants in LD with the genotyped sites, and con-
clude with a comparison of the performance of two recently developed
Bayesian joint localizationmethods, eCAVIARandDAP,findingminor
improvements in detection of linked causal variants but little impact on
fine mapping, particularly in regions of high LD or if sample sizes are
small.

METHODS

Consortium for the Architecture of Gene Expression
(CAGE) dataset
Our simulations utilize genotypes obtained from the CAGE dataset,
which consists of Illumina HT12 microarray-based gene expression
profiles, as well as whole-genome genotype information from five
research studies: the Brisbane Systems Genetics Study (BSGS, N = 926)
(Powell et al. 2012), the Atlanta-based Centre for Health Discov-
ery and Well-Being (N = 439) (Wingo and Gibson 2015) and Emory
Cardiology Genebank (N = 147, Kim et al. 2014), the Estonian Genome
Centre, University of Tartu study (N = 1065, Schramm et al. 2014), and
theMorocco Lifestyle study (N = 188, Idaghdour et al. 2010), for a total
of 2765 individuals. Since the BSGS sample includes twins, it was re-
moved to avoid complications of relatedness, leaving a set of 1839 Eu-
ropean-ancestry unrelated individuals. IRB approval was obtained for
the combination of data into a mega-analysis, both by the University of
Queensland and for each participating site.

Genotype imputation for theCAGEcohortwasperformed jointlyon
the five contributing studies to ensure uniformity of assignment of
strand identities of SNPs, and is described in detail in Lloyd-Jones et al.
(2017) and at https://github.com/CNSGenomics/impute-pipe. Briefly,
the pipeline was as follows: (1) preimputation quality control and data
consistency checks; (2) imputation to the 1000G reference panel with
Impute2 (Howie et al. 2012); (3) postimputation quality control (filtering
on various data features); and (4) merging datasets on common SNPs.

Simulation studies
Fourdifferent simulation studieswere conducted. In all cases,we use the
terminology uni-site (univariable) to refer to models where a single
causal variant is modeled as a fixed effect, and multisite (multivariable)
where two or more variants are modeled, also as fixed effects. The term
multivariatemodeling is used for situationswhere there are two ormore
dependent variables, whereas in these models we are assessing the joint
effects of two or more causal variables. Some models also incorporate
random effects of covariates such as a genetic relationship matrix.

The first set of simulations assessed the power and accuracy of two
site regressions assuming that the identities of the two causal variants are

already known. We modeled the influences of effect size, minor allele
frequency (maf), LD, and sample size. Environmental variance was
randomly generated as a z-score (mean 0 and SD1) and genotype effects
(b) were added in SD units (sdu)multiplied by6 0, 1, or 2 according to
genotype so as to account for from 2 to 30% of the phenotypic variance,
computed as 2p(12p)b2. Thus, an allele with b = 0.8 is expected to
explain 20% of the variance if maf P = 0.2, or 32% of the variance if
P=0.5. The influence of LDwas assessed at r2 = 0.1, 0.5, or 0.9, noting that
as LD increases, high r2 values are not obtained for combinations of a
rare and a common allele. For each combination of parameter values,
we generated 1000 randomizations of the environmental variance, and
assessed (i) the univariate estimate at each genotype, (ii) the mean
conditional estimate of the second SNP, and (iii) the joint effect esti-
mates with both SNPs. From these values, we computed the mean
absolute value of the deviation between the observed estimate and
the true effect size from the univariate, conditional, and joint (two site)
models. The univariate estimates agree extremely well with expecta-
tions from the analytical solution described in the Results.

The second simulation study asked whether unimputed variants in-
fluence the localization of eSNP signals. Since nonimputed SNPs are not
present in the CAGE data, we approximated their identities by randomly
sampling from a set of CAGE-imputed SNPs weighted to have the same
frequency distribution shown in Figure 5C and assigning effect sizes from
2 to 10% of the variance explained for normally distributed pseudogene
expression traits using the CAGE (minus BSGS) genotypes. We then
removed the SNP and all other SNPs with r2 . 0.8, and performed
stepwise conditional regression, documenting instances of primary and
secondary signals at P , 1025, as plotted in Figure 5E. The cumulative
proportion of spurious secondary signals was computed by summing the
detection rate by the size of the maf bin of the unimputed SNPs.

The third set of simulations were performed to evaluate the
difference in effect size estimates using themultisite linear regression
method for parameter estimation from data representative of the LD
structure in the CAGE dataset. For each of 500,000 iterations, four
sites were chosen at random from a window extending from 200 kb
upstream of the transcription start site to 200 kb downstream of the
transcription termination site of a randomly picked gene in the
CAGE cohort (excluding the BSGS data, since it includes twins),
and assigned an effect size from a uniform distribution of variance
explained (VE) relative to environmental noise ranging between
0.02 and 0.1. The effect size b for an allele with maf p is computed as
O[VE/2p(12p)]. Subsequently, each phenotype was simulated as
X4

i¼1

bi   ·   genoi + N(0,1), where bi is the simulated allelic effect size

for a SNP i, and genoi is the dosage of minor allele at the simulated
SNP for a given sample. The significance threshold for sequential
conditional detection of the variants in a sample of 1839 CAGE individ-
uals was set at P , 1025, since simulations indicated a ,1% false dis-
covery rate for null variants at this level. We evaluated (i) how many of

n Table 1 Tagging efficiency of detection of causal variants with r2 cutoff 0.8

Scenario (Positive:Negative Effects)a

Number of Detected Causal Variants 4:0 3:1 2:2

1 0.6% (0.84) 1.4% (1.00) 1.2% (0.62)
2 5.7% (0.69) 10.4% (0.91) 12.8% (0.86)
3 28.2% (0.78) 24.3% (0.85) 22.5% (0.76)
4 55.5% (0.89) 59.0% (0.92) 60.2% (0.90)
.4 10.0% (0.63) 5.0% (0.66) 3.3% (0.56)
a
% indicates the percent of cases with the indicated number of independent discovered variants; numbers in brackets are the proportion of discovered variants that
are in linkage disequilibrium (r2 . 0.8) with one of the simulated causal variants.
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the four SNPswere significant in sequential conditionalmodeling, (ii) the
mean LD between each SNP and the other three SNPs in the model,
(iii) the effect size estimates from the conditional and joint multisite
models, (iv) the difference between these two estimates as a function
of the mean LD, and (v) the rank of the discovered SNP for each
peak eSNP and the modeled sites, which were assumed to be the
causal variants for some trait.

The fourth set of simulationswasperformedtoevaluate the influence
of two Bayesian methods for fine mapping that is sensitive to the LD
structure at a locus. First, eCAVIARwas used to also assess the accuracy
of colocalization of eQTL and GWAS signals. Summary statistics were
generated for normally distributed traits where either one, two, or three
sites chosen at random from contiguous intervals of 100 SNPs in the full
sample of 1835CAGEgenotypeswere assigned toexplainbetween2 and
10% of the variance. Effects were assigned in the same direction for
each minor allele. Marginal single site estimates were generated by
univariable regression, and then eCAVIAR was used to combine the
Posterior Probabilities, which were multiplied together to yield the
CombinedLikelihoodPosteriorProbabilities (CLPP)with a significance
thresholdof 0.001 as recommended (Hormozdiari et al. 2016).Owing to
the high computational burden, only 4000 simulations were performed.
GWAS variants are in general unlikely to explain this amount of var-
iance, but the statistical evidence is approximately equivalent to that
expected for typical trait associations where a SNP explains #0.1% of
the variance in a sample of 20,000 individuals. The effect of sample size
was evaluated by fitting a single eQTL effect to just 200 individuals in
each simulation. Second, the DAP simulations were performed using
the adaptive algorithm, which estimates the number of causal variants
from the data and also generates a list of possible sites that could explain
the effect(s). Again, owing to the high computational burden, only
130 simulations were performed, using the same parameters as for
the sequential conditional analyses with four assigned causal variants.
A final set of simulations designed only to fine map three causal sites in
a single moderate to high LD block extracted contiguous sets of
100 SNPs, and randomly assigned effects only on the condition that
three sites selected from the set each had r2 . 0.3 with one another.

Data availability
Allscriptsareavailableathttps://github.com/jxzb1988/Script-for-constraint-
paper.

RESULTS

Underestimation of allelic effects by sequential
conditional analysis
Our basic simulation framework utilizes the current standard mapping
approach of sequential conditional analysis, in which the residuals from
discovery of each SNP are taken forward as the dependent variable in a
new scan for an independent SNP (Yang et al. 2012). To explore the
performance of this strategy in the context of four causal regulatory

variants in the vicinity of a typical gene, 500,000 simulations were
carried out by randomly picking four SNPs within 200 kb up- or
downstream of the 59 and 39 ends of a randomly chosen gene, from
the imputed whole-genome genotypes of 1839 unrelated European-
ancestry individuals. We assigned each SNP an allelic effect size so as
to explain between 2 and 10% of the variance of a trait otherwise uni-
formly distributed with a mean of 0 and SD of 1. Power to detect
individual univariate effects of this magnitude is close to 100% at the
significance level P , 1025. The sampling was performed across all
genes so as to sample from the typical LD structure in the European-
ancestry human genome. Furthermore, effects were randomly assigned
under three scenarios, with either four positive (4:0), three positive and
one negative (3:1), or two positive and two negative (2:2) effects of
the minor allele on the trait. For the eQTL detection, once the sequen-
tial conditional detection was completed, we determined which of the
four causal variants was in high LD (r2 . 0.8) with one of the discov-
ered sites. If a peak was in high LDwithmore than one causal variant, it
was assumed that it tagged the highest effect site.

Table 1 summarizes the “tagging efficiency,” namely the percent of
simulations in which the indicated number of significant independent
sites was detected, as well as the proportion of the discovered variants
that are in high LD (r2. 0.8) with one of the simulated causal variants.
Across all three scenarios, at least three independent peaks are detected
in�90% of the simulations, and at least four independent peaks in two-
thirds of the simulations. Notably, in the scenarios where all fourminor
alleles influence expression in the same direction, 10% of the simula-
tions detected five or more independent peaks, at least one of which
must be a spurious association, despite a ,1% false discovery rate for
univariate associations of the samemagnitude. The proportion of cred-
ible intervals (r2 . 0.8 regions around each discovered variant) that
contain the actually simulated site ranges between 85 and 90% in each
scenario, again indicating relatively poor localization of the causal
variant.

Similar results are reported in Table 2 for the reciprocal measure of
what fraction of simulated variants is captured by discovered variants.
It includes results for simulations with just two or three causal variants,
and reports the percentage of cases where the causal variant was within
the r2 . 0.8 credible interval for a discovered peak. Across the sets of
500,000 simulations, at least two variants are detected .85% of the
time, but the power to detect all of the multiple eSNPs is a function of
the number of sites operating in the same direction. It is highest for the
case where theminor alleles for all four variants have effects in the same
direction and least where two are in one direction and two in the
opposite direction. In the 4:0 scenario, three or more of the four eSNPs
are detected three-quarters of the time, whereas this proportion drops
toward two-thirds with the simulations for 2:2. No variants are detected
in just over 1% of the simulations, and just one variant in�6% of them,
while 80% of the variants are detected overall. This proportion rises to
90% for the two-variant simulations, illustrating howmultisite interac-
tions reduce the discovery of independent eQTL peaks.

n Table 2 Detected true causal variants in simulations with four, three, or two causal variants

4 SNP Scenario 3 SNP Scenario 2 SNP Scenario

Detected True 4:0 3:1 2:2 3:0 2:1 2:0 1:1

0 1.1% 1.2% 1.4% 2.1% 1.9% 5.5% 6.3%
1 5.5% 6.0% 6.0% 12.1% 15.1% 9.4% 9.1%
2 18.4% 22.3% 23.7% 17.6% 17.9% 85.1% 84.6%
3 23.7% 23.4% 22.1% 68.2% 65.0%
4 51.3% 47.1% 46.7%
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Another way to consider the power of multisite detection is to ask
how much of the variance explained by the four SNPs is captured by
the discovered variants. Box and whisker plots in Figure 2 show that,
under all three scenarios, on average 85–90% of the variance is cap-
tured, namely in these simulations �15–20% of the transcript abun-
dance. Although effect sizes of all SNPs were drawn from the same
distribution, the first discovered SNP (rightmost box in each panel)
typically explains between one-third and one-half of the expected
variance, suggesting that it often tags some of the effect of another
site. Since the primary SNP captures on average more than two-
thirds of the heritability at each locus in actual peripheral blood
data (Lloyd-Jones et al. 2017), it is likely that secondary and ter-
tiary SNP effects are, in reality, smaller than primary SNP effects.
As expected, summation of the independent contributions from the
sequential conditional models, or fitting all of the discovered variants
simultaneously in a multivariable model, explains very similar pro-
portions of the variance overall. Similar results are seen with two or
three simulated causal variants (Supplemental Material, Figure S1 in
File S1).

Estimation of the proportion of secondary associations
that are false positives
The detection of more association peaks than the number of simulated
sites implies that some fraction of peaks are false positives that arise due
to sampling artifacts in the presence of high LD, whereby an imperfectly
tagged site is split into two or more spurious signals. An example is
shown in Figure 3, A and B, contrasting the localManhattan profiles for
a single causal variant that splits into two associations when the peak
SNP, rs9806753, is excluded from analysis. To explore the frequency
with which this occurs, we conducted simulations assuming a single
causal variant based on the genotypes measured in 1839 European-
ancestry samples from the CAGE cohorts (see Methods). Randomly
assigning causal effects resulted in the appearance of a secondary signal
at P, 1025, conditioned on the causal site, at 0.3% of the loci. This is
approximately as expected given 8.3 million imputed SNPs at 22,000
loci, and is also the same as the false discovery rate of primary signals in
the absence of any simulated causal locus; that is to say, our random
expectation is for 0.3% of transcripts to have a false eQTL discovery at
P , 1025 in the CAGE dataset.

However, this ignores the possibility that the causal variants are not
present in the imputed genotypes. Of the 9.7 million SNPs, indels, and
CNV with maf . 0.01 in the European populations in the 1000G
database, 1.9 million are not imputed in our CAGE samples. Figure
3C shows that the maf distribution for these variants is strongly shifted
toward rarer alleles relative to the imputed SNPs, and is centered at a
maf �0.02. Consistent with Yang et al. (2015), the average tagging
efficiency (r2 value) of these SNPs is a function of maf, being .0.7 for
maf. 0.05, but dropping to,0.5 for maf = 0.01, as seen in Figure 3D.

Since we cannot simulate effects at nonimputed SNPs, we approx-
imated such alleles by randomly simulating a causal variant from the
CAGESNPswith the same frequencydistribution, but excluding it from
the analysis along with all variants that would tag it at the typical level
observed for the nonimputed SNPsof the samemaf.We then askedhow
often the effect is captured by multisite signals, as a function of residual
tagging efficiency. We allowed for increased effect sizes with lower maf
by simulating effects in the constant range of 2–10% of the variance
explained. The proportion of such pseudounimputed SNPs that gen-
erate primary signals is reduced with lower maf, due in part to the
smaller proportion of variance explained by the less common variants
that partially tag them. For common variants, there is almost always a
second site in high enough LD to capture most of the causal signal in

the absence of genotypes at the causal variant, but rare variants are
insufficiently tagged to generate a signal at all, 90% of the time.

In the presence of tagging SNPs with r2 . 0.5 to the “unobserved”
causal variant, false secondary associations are observed #40% of the
time. At the other end of the spectrum, rare variants (maf �0.01) that
produce a primary signal at a tagging SNP with 0.1 , r2 , 0.3 also
produce a secondary signal but less frequently. The blue curve in Figure
3E indicates the inferred fraction of unimputed variants that could
induce secondary signals as a function of maf, and Figure 3F shows
that the cumulative proportion of such spurious eQTL weighted by
observed maf proportions approaches 20%. Approximately 14% of
the 1.9 M unimputed variants are located within 200 kb of a gene,
and assuming that 0.1% of these actually have an eQTL effect, this
suggests the potential for �250 such effects.

These computations argue that up to 10% of the observed .2300
multisite associations reported by Lloyd-Jones et al. (2017) have the
potential to be false signals driven by inefficient tagging of unimputed
variants in CAGE. The proportion could be greater if the fraction of
functional SNPs is higher, as suggested for example by Tewhey et al.
(2016), who used a very sensitive MPR assay to implicate 3% of regu-
latory sites in 3642 eQTL regions (842/32,373 tests) as capable of mod-
ulating transcript abundance. However, the proportion of sites with
detectable signals capable of explaining.2% of the variance is certainly
lower, and 1 in 1000 (0.1%) is a reasonable estimate given that there are

Figure 2 Proportion of variance explained by detected eSNPs in simula-
tions. Box and whiskers show median, interquartile range, and 95% C.I. for
the proportion of variance explained under three scenarios for 500,000
simulations of four sites affecting gene expression. From left to right in
each simulation, Simu is the variance explained by the known sites,
Multi is the result fitting discovered eSNPs jointly, Uni is the result of
summing the effects from sequential conditional modeling, and Single
is the effect of the peak detected eSNP. The y-axis shows the proportion
of variance explained. Scenarios are 4:0, all four minor alleles with ef-
fects in same direction; 3:1, one minor allele effect in the opposite di-
rection; 2:2, two minor alleles on one direction and the other two in the
opposite direction. eSNP, expression single nucleotide polymorphism.
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of the order of 1300 documented variants in the vicinity of each gene
and no more than 30% of expressed genes have a secondary eQTL
signal. Synthetic associations due to even rarer variants may be
expected to generate split associations as well (Dickson et al. 2010;
Zhu et al. 2012). Yang et al. (2015) found that �20% of the variance
for height can be explained by SNPs with maf , 0.1, in part due to
larger effect sizes of prevalent very rare SNPs, many of which are likely
secondary associations. We also found that there is an excess of rare
variants (maf , 0.01) influencing extremes of gene expression, also
with a slightly larger distribution of effect sizes than common variants
(Zhao et al. 2016). Too many unknown parameters need to be evalu-
ated to give a good estimate of the number of false positive secondary
associations due to synthetic effects of very rare alleles, but it may be
another few percent.

Effect of multisite modeling on accuracy of localization
of associations
A possiblymore important measure of estimation bias is the location of
the peak SNP relative to the causal site. The most straightforward
measure of colocalization is the Regulatory Trait Concordance (RTC)
score (Nica et al. 2010), which is intuitive and easily implemented on
the scale of our simulations. It is essentially a ranking of the significance
of the detected eQTL P-value relative to the casual site, RTC = (NSNPs2
Rankcausal SNP)/NSNPs, where a value of one indicates identity, and zero
that the two sites are in the same locus but highly unlikely to be

capturing the same signal. Figure 4 plots the cumulative frequency
distribution for RTC scores for the primary eQTL signals relative to
the largest effect causal variant in each simulation, contrasting the 4:0,
3:1, and 2:2 scenarios. For comparison, under a single variant model,
RTC is always close to one as expected [note that, since we do not
simulate the GWAS signal as well, these values are inflated relative to
data where the identity of the actual causal variant is unknown (Nica
et al. 2010)]. For 10% of simulations in the presence of multiple regu-
latory variants, the RTC score of the primary SNP drops below 0.9,
again with greater tendency towardmisestimation of the eQTL location
in models with opposing effect directions of the minor alleles. This
analysis confirms the results in Table 2, indicating that up to 15% of
all detected SNPs are not in high LD (r2. 0.8) with a simulated variant
in the imputed panel of SNPs.

Localization of tertiary and quaternary signals is affected more
strongly, but intriguingly, considering just associations within r2 .
0.8 of a simulated SNP, the secondary signal is slightly more likely to
be the first or second ranked SNP for one of the causal variants than is
the primary signal. This is true under all three scenarios, which have
very similar profiles to that shown for the 3:1 scenario in Figure S2 in
File S1 (since there is wide variance in the number of SNPs in each
region, we simplified the analysis by reporting just the SNP ranks in this
figure, rather than RTC). It should be noted that there is not strong
concordance between the relative proportion of variance explained
by the causal variants and whether they are the primary through

Figure 3 Proportion of false multiple eQTL de-
tection due to unimputed variants. (A and B)
Example showing how poor tagging can split one
causal into two separate signals at the SHC4 lo-
cus. (A) SNP rs9806753 (European-ancestry maf =
0.23) was simulated in CAGE to generated an
eSNP effect, but removal of this variant and all
SNPs within r2 . 0.5 from the analysis (B) results
in the effect being captured by both a primary
(rs62010876, maf = 0.10) and secondary (rs1974961,
maf = 0.13) signals. (C) Empirical maf density dis-
tribution of 1.4 M unimputed 1000G (red) and 8.3
M imputed 1000G variants in CAGE (blue), dem-
onstrating shift to lower frequencies for variants
not tagged. (D) Tagging efficiency as a function
of maf based in mean r2 for the strongest corre-
lated SNP for 10,000 randomly selected variants
across the frequency spectrum in the CAGE ge-
notype dataset. (E) Corresponding signal detec-
tion rate at P, 1025 for randomly assigned effect
sizes, explaining between 2 and 8% of a simu-
lated gene expression trait for primary (red) and
secondary (blue) signals when the simulated var-
iant is excluded from the analysis. (F) Cumulative
proportion of sites expected to generate a false
multiple eQTL detection, calculated as the sum
of the false secondary signal detection rate
weighted by the maf frequency in the indicated
bins. Multiplication of this proportion by the num-
ber of unimputed SNPs in genic regions (14% of
1.4 M) and the actual proportion of SNPs that
have effects (unlikely to be .1%) yields up to
400 possible false positive secondary associations.
CAGE, Consortium for the Architecture of Gene
Expression; eQTL, expression quantitative trait lo-
cus; eSNP, expression SNP; maf, minor allele fre-
quency; SNP, single nucleotide polymorphism.
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quaternary association, since LD has a strong influence on detection
power. Although the vast majority of discovered sites are within three
or four SNPs of at least one of the four causal variants when they are in
high LD with one of them, it cannot be concluded that the order of
discovery corresponds to the true order of effect sizes.

Joint fitting pairs of known causal variants accurately
estimates effect sizes
Before addressing the accuracy of effect size estimation following step-
wise conditional analysis, it is worth noting that, in the case where the
identities of two causal variants are known a priori, joint fitting of the
two SNPs in a single regression on transcript abundance always results
inmore accurate effect size estimates, given a large sample size. The bias
in estimation due to LD between pairs of SNPs is a function of the two
effect sizes (b1 and b2), the correlation between the SNPs (r), and
the ratio of the square root of the product of their allele frequencies:
Ê(b1)2b1 = rb2 O(p1(12p1)/p2(12p2)) (Yang et al. 2012). This is
maximized for pairs of SNPs at the same frequency, increases with high
LD, and can be either positive or negative depending on whether the
signs of the minor allele effects are coupled or not. Figure S3 in File S1
provides a visual summary of the biases, compared with the effect of
jointly fitting the two SNPs with a sample size of 2000, which uniformly
improves the effect size estimates.

Three results deserve highlighting. First, for each combination of
allele frequencies, increasing the allelic effect size results in more severe
biases, in themost severe cases over- or underestimating the effects by as
much as 50% of the variance explained. Second, the first picked SNP
(with the larger effect size) has the greater deviation between the
estimated and true effect size. This makes intuitive sense as the larger
effect will generally be the first detected one and absorbs much of the
effect of the other SNP, which will typically be underestimated in the
conditional analysis, but to a lesser extent. If the deviation is computed
simply on the uni-site unconditional values, the opposite result is
obtained: the deviation is greatest for the smaller effect site. Third, the
misestimation isgreatest for lowerallele frequencies,whichisparticularly
noteworthy since most eQTL have maf in the range of 0.1–0.3.

Wealso considered thepower todetect joint effects in thepresenceof
LD. As the P value cutoff for detection becomesmore stringent, the bias

in estimation becomes more severe, since the first picked SNP absorbs
the effect of both alleles into the same estimate, leaving the statistical
power of the other allele, conditioned upon the first one, close to zero.
With a sample size of 2000 and intermediate LD, when both alleles are
modeled jointly, power to detect both effects remains high across the
plausible parameter space once the effect size exceeds 5% variance
explained, and the estimation for the b value is still accurate. Down-
sampling suggests that in order to estimate effects within 0.1 sdu, for
pairs of variants with LD r2 � 0.9, each explaining 10% of the variance
(namely having effect sizes of at least 0.5 sdu), a sample size of at least
900 is required.

Consequently, most small sample eQTL studies will fail to resolve
linked sites into two effects. These results indicate how the typical
assumption that an eQTL effect is due to a single variant in a set of
credibleSNPs inhighLDispotentiallyhighlybiased.Similar conclusions
apply to the situation where two SNPs operate in opposite directions,
with the additional dilemma that they will not be detected at all and
consequently strongly underestimate the regulatory variance at a locus.

Misestimation of allelic effects sizes by sequential
conditional analysis
Even though the sequential conditional and multisite models capture
essentially equivalent proportions of the variance tallied across sites,
biases in estimation of individual site effects ought to be reduced by the
multisite modeling. To quantify this difference, we computed the de-
viation between the observed and true simulated effect sizes (b in sdu)
for each discovered peak located within r2 . 0.8 of an independent
causal variant, and evaluated the absolute value of these deviations as a
function of the mean LD between the causal variant SNP and the other
three causal variants in the model. Figure 5, A and B show the average
absolute value of the deviation for SNPs with the indicated true effect
size and LD, for the sequential conditional estimates, and for multivari-
able models fitting all discovered variants jointly, respectively. The fig-
ure shows results for the 4:0 scenario where all minor alleles operate in
the same direction. The scale from dark blue to yellow indicates mis-
estimation of effect sizes ranging from less than 0.5 sdu to more than
three units, where each pixel is averaged over the number of simulations
with the indicated allele effect sizes and average LD in Figure 5C.

Several results are noteworthy. First, for causal variants in lowLD, as
expected, neithermodel results in appreciable estimatebias, but once the
average LD rises above 0.5, effects can bemisestimated bymore than the
effect size. For example, for b = 0.5, the absolute value of the difference
between the observed and true effect is typically between 1 and 2 sdu,
which depending on the allele frequencymay correspond to at least 2%
of the total gene expression variance. Second, for large effect alleles, the
misestimation is appreciable even at intermediate levels of LD, and it is
not unusual for estimates to be off by as much as 4 sdu under either
model.

Third, overall, themultisitemodeling corrects someof the sequential
conditional analysis bias. The difference in performance of the two
estimation procedures is shown in Figure 5D, a plot of the average
multisite estimate minus the average sequential conditional estimate.
Most values are pale green, indicating close similarity of the estimates,
but bluish-tinged bands imply that the multisite model gives a better
approximation to the true effect size for LD centered�0.1, 0.4, and 0.8.
Misestimation without multivariate estimation can be twice as severe
for very large effect alleles, although these only account for a very small
fraction of all simulated alleles.

Similar trends are seen for the 3:1 scenario, where one of the minor
alleles operated in the opposite direction to the other three, as well as in

Figure 4 The single causal variant assumption biases fine mapping of
causal variant locations. Each curve represents the cumulative probability
distribution for RTC scores for the primary causal variants under a model
with a single causal variant (purple), or with four causal variants under
scenarios 4:0, 3:1, and 2:2 (blue, green, red curves, respectively). RTC
scores close to one imply equivalence of the significance values of the
eQTL and causal variant. eQTL, expression quantitative trait locus; RTC,
Regulatory Trait Concordance.
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the 2:2 scenario (Figure S5 in File S1), and simulations with just two or
three causal variants yield similar conclusions (Figure S6 in File S1).
The advantage of joint modeling is reduced in the presence of opposing
allelic effects, but still prevalent in the region with high allelic effect size
and low LD; and, as noted above, a large proportion of causal sites are
not discovered in the 2:2 scenario, so are not included in the estimation.

In summary, stepwise conditional eQTL discovery is expected to
discover between 70 and 80% of eQTL within realistic effect size ranges
typical of those reported in the literature. Once discovered, multi-locus
estimation of effect sizes provides slightly more accurate estimates than
the estimates from sequential conditional models, but for large effect
alleles in high LD the corrections can be substantial.

Bayesian modeling only slightly improves mapping of
multisite associations
Recently, a number of Bayesian approaches have been introduced that
are designed to improve finemapping of eQTL effects (Giambartolomei
et al. 2014, Zhou et al. 2013). One of these is eCAVIAR (Hormozdiari
et al. 2016), which reports a CLPP based on the combined likelihood
that a variant influences both the abundance of a transcript and a
phenotype given the LD structure at a locus. The authors proposed a
CLPP cutoff of 0.001 (for example, a posterior probability of 0.1 for the
eQTL and 0.01 for a disease association), which corresponds in our
simulations (Table 3) to discovery of 80.7% of single variants sampled at

random from contiguous blocks of 100% SNPs in the CAGE European-
ancestry cohort genotype data. The computational burden of evalu-
ating all possible four site combinations is too large for this model to
be applied in genome-wide scans. Instead, we performed 4000 simu-
lations of 1835 individuals in the presence of two or three regulatory
variants, as well as a normally distributed phenotype, and evaluated
the CLPP distributions. In the case of two causal variants, just 94.7%
generated CLPP. 0.001, and for three causal variants, 84.9%. Figure
6 shows the cumulative distribution functions of the CLPP scores as a
function of the number of causal variants, clearly documenting the
trend for reduced confidence in joint localization as the degree of
multisite regulation increases. Similar trends were seen with a more
conservative CLPP cutoff of 0.01, confirming that interference among
tightly linked sites reduces the power to detect independent causal
variants. The upper red curve also indicates that the power to detect
colocalization is greatly reduced with sample sizes of just 200 for the
eQTL sampling: in fact, just 60% of simulations with a single causal
site yielded a CLPP . 0.001.

Since eCAVIAR is not designed to cover intervals encompassing all
of the regulatory regions of a typical gene and hence is not directly
comparable with the stepwise conditional regression, we also evaluated
the DAP algorithm (Wen et al. 2016). DAP is designed to identify
independent credible intervals and report candidate SNPs across a
locus, incorporating priors that weight likely functional or evolutionary

Figure 5 Biases in effect size estimation from conditional and joint analysis. All panels refer to 500,000 simulated data points where effect sizes were
sampled from a uniform distribution to explain from 2% to 10% of the expression at a locus for each of 4 SNPs picked at random from 400kb intervals
of the CAGE genotype data. Panel (A) compares estimates from joint and conditional modeling, as a heatmap of the average difference in panels C
and D, where yellow indicates that joint modeling produces a larger estimated effect size, and blue a lower estimate with three bands of negative
values indicating greater bias in the conditional estimates. Panel B shows the density distribution on the log2 scale of the number of simulations with
alleles for each pixel with the indicated b (in standard deviation units, sdu) on the x-axis, and average LD with the other 3 sites at the locus on the
y-axis. Panels C and D show the average absolute value of the deviation between the observed and known effect size for sites under the multi-site
model where all discovered sites are fit jointly (C) or from single site estimates after each step of sequential conditional analysis (D), for the 4:0
scenario where all minor alleles have effects in the same direction. See Figure S4 for the equivalent panels for the 3:1 and 2:2 scenarios.

n Table 3 Effect of multisite regulation on colocalization of eQTL with eCAVIAR

Number of Sites
Number of Causal Variants Simulated (n = 1835) n = 200

1 2 3 1

Tested 3960 7880 11,830 3999
CLPP . 0.001 3959 7466 10,038 2426
Proportion 100% 94.7% 84.9% 60.7%

CLPP, Combined Likelihood Posterior Probabilities.
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evidence. Using the adaptive DAP procedure, which does not make any
prior assumptions about the number of causal variants at a locus, we
performed 130 simulations of four variants with effect sizes drawn as
before to explain between 2 and 10% of the variance, all operating in the
same direction. The average number of detected variants was 3.76,
which included 3.52 of the four simulated sites (88%) in the candidate
list. Due to different statistical thresholds, it is difficult to compare this
result with the stepwise conditional model, but it appears to be an
improvement on the 80% reported in Table 2.

Asexpected,DAPfails todetect truecausal variants in thepresenceof
high LD. Figure 7A shows the dependency of the number of discovered
variants on the mean LD between the four simulated sites in each
simulation, while Figure 7B shows howmany of the true causal variants
are detected. Notably, if all four variants are in a single block of high LD,
no sites are detected since the posterior probabilities are dispersed
across all of the variants. Across the full extent of up to 500 kb at most
loci there are usually multiple LD blocks, so DAP, like stepwise condi-
tional modeling, is quite efficient at detecting independent credible
intervals. However, it consistently overreports the number of candidate
variants and Figure 7C shows that this number also increases with LD.
To confirm that DAP is still able to resolve multiple causal variants in
the presence of high LD, we also ran 400 simulations with the con-
straint that three sites must be within r2 . 0.3, using the DAP-k
algorithm with k = 3 (assuming three sites), showing the results in

Figure 7, D–F. In this case, the number of detected independent asso-
ciations dropped to 1.95, namely 65% of the simulated number. Al-
though 79% of the simulated variants were among the candidate lists,
these can become very large with a ratio of ten-to-one candidates for
each true causal variant. Stepwise conditional analyses on the same
simulations with a cutoff of P , 1025 discovered on average 1.56
(52%) of the three simulated effects and included 2.29 (76%) of the sites
within the credible interval. Consequently, DAP does appear to improve
performance, at the cost of a considerably higher computational burden.

DISCUSSION
Studies of the genetic regulation of gene expression are making a
meaningful contribution to the interpretation of GWAS results, as they
provide functional insight into the nature of the causal genes. However,
efforts to fine map causal variants are complicated by the limits of
statistical resolution as it is not uncommon for tens, if not hundreds, of
polymorphisms in a credible set to have similar statistical support
(Gaulton et al. 2015; Kichaev and Pasaniuc 2015). Inclusion of exper-
imental evidence from epigenetic marks or signatures of evolutionary
conservation into scores such as CADD (Kircher et al. 2014), CATO
(Maurano et al. 2015), and LINSIGHT (Huang et al. 2017) promises to
improve resolution, as do methods such as RTC (Nica et al. 2010) and
PICS (Farh et al. 2015), which prioritize variants based on the structure
of LD at a locus. In general, these approaches assume parsimony,

Figure 6 Colocalization with eCAVIAR in the presence of multiple regulatory sites. Cumulative Distribution Functions summarize CLPP scores for
4000 simulations each with one, two, or three assigned causal sites within a contiguous block of 100 SNPs. Green, purple, and teal curves show progressive
degradation of evidence as the number of modeled causal variants increases, for simulations with 1835 subjects. The red curve shows that more than half
of the simulations with just 200 subjects for the eQTL component have CLPP , 0.01, and just one-quarter .0.1, compared with one quarter .0.98 with
1835 subjects. CLPP, Combined Likelihood Posterior Probabilities; eQTL, expression quantitative trait locus; SNP, single nucleotide polymorphism.
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namely that there is a single variant that is responsible for the major
GWAS or eQTL signature. Although it has become increasingly clear
that many loci harbor multiple independent regulatory variants, we
argue here that if the parsimony assumption is relaxed and it is assumed
thatmultiple sites in strong LD commonly account for a signature that is
compounded into a single significant association, then the estimates
from sequential conditional analysis can be highly biased. To summa-
rize, we find that .5% of primary sites and more than one-fifth of all
causal sites are unlikely to be tagged at all; that in the presence of
multisite regulation at least 15% of all mapped sites are not in strong
LD with any of the multiple imputed causal variants at a locus; and that
another 10% of the associations are plausibly due to splitting of the
signal due to an unimputed site. Taken together with increasing evi-
dence that up to a third of all eGenes have two or more independent
eSNPS (Gusev et al. 2014;Wen et al. 2015; Lloyd-Jones et al. 2017), these
results suggest that at least 5% and perhaps as many as a one-quarter of
mapped credible intervals may not include the actual causal variant.

Theory and simulation both indicate that if two linked sites both
influence a trait, including gene expression, then multisite models will
uniformly outperformsequential uni-site oneswith regard toestimation
of the true effect size. When the identities of the variants are known,
sample sizes of several thousand individuals are sufficient to jointly
estimate their effects with high accuracy even in the presence of high

levels of LDwith r2 up to, or even exceeding, 0.9. The problem is that the
identities of the variants are generally not known, and there are no
established methods for comprehensive screening transcriptome-wide
for localization of multi-locus local eQTL effects. Two exhaustive search
algorithms, PAINTOR (Kichaev et al. 2014) and CAVIARBF (Chen
et al. 2015), hold promise for detailed dissection of multisite models at
individual loci, and a Bayesian shotgun stochastic search algorithm,
FINEMAP (Benner et al. 2016), has recently been proposed for rapid
maximum likelihood estimation of multi-SNP contributions. Here, we
show by simulation that DAP (Wen et al. 2016) does indeed improve on
sequential conditional analysis for localization of multiple linked causal
variants, but that in regions of high LD its performance remains con-
strained. Given the computational burden, it may be more efficient to
use stepwise modeling, perhaps supplemented with a lasso regression
method, to map independent sites in low LD, and then concentrate on
each credible interval with these Bayesian fine mapping tools. It should
also be recognized that single site effects may sometimes be artificially
split into two ormore linked contributions under each of these strategies.

Wealso estimated thebias in the estimates fromconditional analysis,
byfittingmulti-locus linearmodels to all of the discovered eSNPs at each
locus. This revealed onlymodest improvements in accuracy for most of
the discovered sites, but themodesty is in part an artifact of thediscovery
bias introduced by the sequential conditional process. Our simulations

Figure 7 Fine mapping with DAP in the presence of multiple regulatory sites. (A–C) Results for simulations with four causal sites drawn at random
from 200 kb upstream and downstream of each gene. (D–E) Results for simulations with three causal sites drawn from 100 continuous SNPs, each
in LD with r2 . 0.3. (A and D) show the estimated number of sites as a function of the mean LD between the sites, showing that as LD increases,
detection of independent intervals decreases. (B and E) show the number of modeled (true) causal sites in the candidate lists, as a function of
mean LD, which in this case increases for high LD. (C and F) show that the number of candidate sites increases with high LD, sometimes with 20 or
more candidates defining a credible set for each true site. DAP, Deterministic Approximation of Posteriors; LD, linkage disequilibrium.
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assuming two to four effective sites per locus across a wide and
representative range of LD, show that in a sample size of 2000, in
general no more than 85% of the simulated causal sites are tagged by
discovered associations that explain typically observed magnitudes of
effect and would almost always be detected if a single site explained the
variance. Similarly, Lloyd Jones et al. (2017) estimate that, in the CAGE
dataset, on average between 50 and 75% of the heritability due to locally
acting regulatory polymorphism can be attributed to discovered vari-
ants. Multisite modeling readjusts the remaining estimates typically by
between 0.1 and 0.5 sdu, which, depending on the allele frequency,
accounts for between 2 and 5% of the variance explained, and only
rarely .10%.

However, any variantswith effect sizes.1 sdu, andwhose average r2

with the other three SNPs is .0.9, will be misestimated in both the
single site and joint models, typically by 1.5 sdu or more. The mis-
estimation is on average the greatest where all of the effects are in the
same direction, but is consistently observed also in the presence of
associations with alternate signs. Unavoidably, the sequential condi-
tional estimates of eQTL effects are actually highly biased for a consid-
erable proportion of variants. Although this does not impact the total
amount of variance explained by the discovered variants, it is likely to
greatly impact fine mapping efforts, particularly where two or more
effects are collapsed into one site in a credible interval.

While large datasets have very good power for detection of com-
plex regulatory contributions for individual genes, there are a host of
technical and statistical reasons why fine mapping of causal variants
remains a challenge. There are two immediate strong implications of
these results.One is thateven thoughthemajorityof identifiedeSNPsare
expected to map to credible intervals that include the causal variant
(Gusev et al. 2014; Finucane et al. 2015), there will also be many
instances where incongruence between the statistical interval and chro-
matin or other functional evidence (Huang et al. 2015) is to be
expected. The causal variant may simply be poorly mapped due to
interference among linked functional sites. This effect may also influ-
ence the fine mapping of pleiotropic associations (Fortune et al. 2015).
The second implication of the high frequency of multisite regulation is
to emphasize caution in using univariate statistical support for an eSNP
effect as sufficient evidence that an association between a SNP and a
trait is evidence for causation. At a minimum, it is imperative that the
full spectrum of eSNP effects across the locus be evaluated to confirm
that the site is not simply in LD with higher likelihood eSNPs that are
not themselves associated with the trait. Experimental validation of
individual sites seems warranted in situations where establishment of
the identity of the causal variant(s) is desired.
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